

eXtended Block Mode (X-Mode)

Protocol Proposal

Draft proposal, v1.2

Igor Mandrichenko, FNAL

Status of this Document

This document is a Global Grid Forum Draft. It presents a proposal for improvement
of Extended Block Mode protocol to allow dynamic opening and closing of data
channels during point-to-point or striped n-to-m transfers, and eliminates the uni-
directional transfers feature of the protocol as described in GridFTP v1.0 draft.

This document supersedes previous version named “Modification of Extended Block
Mode Proposal”. It introduces new FTP data transfer mode, X mode. It incorporates
the modifications to originally proposed protocol made after initial prototype
implementation and recently proposed provisions for data integrity verification [crc].

Copyright Notice

Copyright  Global Grid Forum (2003). All Rights Reserved.

Abstract
GridFTP protocol has become popular data movement tool used to build distributed
grid-oriented applications. GridFTP protocol extends FTP protocol defined by RFC959
[rfc959] and other IETF documents by adding certain features designed to improve
performance of data movement over wide area network, to allow the application to
take advantage of “long fat” communication channels, to help build distributed data
handling applications.

Several groups have developed independent implementations of GridFTP v1.0 [gftp]
protocol for different types of applications. This document summarizes the
experience gained by these groups and their proposals for possible protocol
improvements. The goal of these improvements is to develop more robust, reliable
and scalable protocol for bulk file-oriented data transfer over wide and local area
networks. This document proposes one of improvements for the protocol.

Contents
Abstract.. 2
Contents... 3
Background... 4
Proposed Solution .. 4

Data Block Format... 4
Data Channel Protocol.. 5

Opening Data Channel... 6
Closing Data Channel .. 6
Data Retransmission ... 7

Host Pairs .. 8
End of File Communication ... 9

Active Receiver .. 9
Passive Receiver..10
Passive Sender..10
Active Sender ...10

Dynamic Resource Allocation ...10
Active Sender ...10
Active Receiver ...11
Passive Sender..11
Passive Receiver..11

Data Channel Command Syntax ...11
References...13

Background
GridFTP protocol defines extended block data transfer mode, which can be used for
parallel data transfers. The idea of transferring data over multiple concurrent TCP
streams is becoming popular among computational data grid application developers.
This makes extended block mode and GridFTP protocol very attractive as possible
standard for data transfer mechanism.

However, extended block mode has one critical deficiency. In extended block mode,
data must flow in the same direction as TCP connection establishment. In FTP
standard terminology, receiving FTP server must always be passive, and sending FTP
server – always active. This makes it impossible to use extended block mode with
NAT, firewalls, etc.

Main reason for this limitation is difficulty in robust communication of end of file over
multiple data streams. Currently, end of file is signaled using special EODC message
that carries total number of open data channels. It is used to make sure sender and
receiver saw the same number of open data channels and neither one is still “in
flight”. Unfortunately, this method works only when data sender is active. Also, it
does not work in case of striping or many-to-many data transfers.

Another deficiency of existing extended block mode protocol is the fact that data
receiver must accept all incoming data connections and is not allowed to close data
channel socket or any existing data channel.

Also, for massive data transfers it becomes important to verify data integrity to
prevent data loss due to transmission errors. Sending some sort of checksum value
along with data makes it easier to detect transmission errors and recover from them.

The proposal is to introduce new data transfer mode – X mode. This is a modification
of Extended Block mode documented in [gftp].

Proposed Solution
The proposed solution is based on the following ideas:

• Use robust handshake schema to open and close each data channel. This is
achieved by introducing “READY”, “CLOSE” and “BYE” messages sent in the
beginning and at the end of the transfer on the data channel in the direction
opposite to the data flow;

• Do not use EODC to send number of used data channels. Instead, send EOF
message on one or more data channels open between two hosts. The same
bit 64 can be used for EOF message;

• Send checksum value along with each data block so that the receiver can
verify data integrity and immediately request retransmission of the block if an
error is detected. The receiver sends “RESEND” message back to the sender
on the same data channel but in the direction opposite to the data flow.
Sender and receiver will use OPTS/FEAT mechanism to negotiate concrete
type of the checksum prior to the data transfer.

Data Block Format
Data block format is almost the same as for B and E modes. The only difference is
that if data integrity verification is turned on (using OPTS mechanism), each data

block is followed by checksum value calculated over the block header and data.
Length of the checksum value is determined by previously negotiated checksum
type. If checksum calculation is not turned on, then no checksum value is appended
to the end of the block. Data block format is:

Field Length, bytes Contents
Descriptor 1 Block descriptor. Bits in the descriptor are:

64 – End of file (EOF)
8 – End of data (EOD) – request to close this data
channel
4 – Sender will close this data channel instead of
reusing it (?)

Byte count 8 Length of data
Offset 8 Offset of the block in the file
Data <byte count>,

can be 0
Data

Checksum depends on the
type, can be 0

Value of the checksum calculated over header and
data

Data Channel Protocol
Proposed data channel protocol is outlined in Fig. 1 and 2 for active and passive
sender cases respectively

Fig. 1

Fig. 2

Opening Data Channel
When passive data receiver accepts new incoming connection on the data socket, it
must acknowledge data channel opening with “READY” message sent on newly
created data channel socket to data source. Active data sender does not send any
data on the data channel until it receives “READY” message. This procedure ensures
that active sender and passive receiver hosts use the same number of data channels
for the transaction and essentially makes it unnecessary to send channel count in
EODC message.

Passive receiver may close new data socket without sending “READY” message or
even stop accepting new connections. No data will be lost in such cases because the
sender will not send any data before receiving “READY” message.

In case of passive sender and active receiver, there is no need for “READY” message.
Sender can immediately begin sending data on newly accepted data channel socket.

In general case of many-to-many striped transfer, active peer must open at least
one data channel to each passive peer host. This is necessary to make sure that ,
even if there is no data to be sent to or received from one of passive hosts, it does
not have to wait forever for the transfer to begin.

Closing Data Channel
There are two cases when a data channel may be closed under normal
circumstances:

• There is no more data to send on the channel, i.e. the sender has reached
end of file

• Either sender or receiver closes one or more data channels in the middle of
transfer, e.g. to control bandwidth utilization

Data Channel Closed by the Sender
Before closing a data channel socket (either at the end of the file or in the middle of
the transfer), data sender (active or passive) must send EOD message as defined by
extended block mode protocol on the data channel. Data receiver acknowledges EOD
message with “BYE” message sent back on the data channel. Data sender may
choose to wait for “BYE” message to make sure the receiver successfully received all
data sent over the data channel. Failure to send “BYE” message to the sender should
not be considered an error by the receiver as the sender may choose not to wait for
data channel closure confirmations. After sending “BYE” message the receiver may
close the data channel or keep it open to reuse in future transfers. Likewise, after
receiving “BYE” the sender may choose to close the data channel or keep it open.
Data Channel Closed by the Receiver
If the receiver wishes to close a data channel in the middle of the transfer, it must
send “CLOSE” message on the data channel (see Fig. 3). After sending “CLOSE”
message, the receiver must continue receiving the data on the data channel until it
receives EOD block. After receiving EOD block, the receiver sends “BYE” message on
the channel.

Fig. 3

Data Retransmission
If the receiver detects an error in a block transmission, it can request that the sender
resends the block. To request block retransmission the receiver sends “RESEND”
command on the same data channel where the erroneous block was received:

Fig. 4

After detecting a transmission error in one of data blocks and sending “RESEND”
command, the receiver should continue receiving data.

It is possible that the bad block will be retransmitted after EOD is received. The
receiver should not send final “BYE” and close the data channel until it receives all
blocks it requested to be retransmitted.

Host Pairs
In most general case of striped transfers, data is sent from N sender hosts to M
receiver hosts. Therefore, there are N*M sender-receiver host pairs. Each host pair
may open zero or more data channels (see Fig. 4).

Fig. 4

The protocol allows for dynamic management of such resources as network
bandwidth and socket file descriptors by allowing hosts in each pair to open and
close data channels dynamically during data transfer without any data loss.

End of File Communication
End of file is signaled by sending (possibly empty) block with EOD and EOF flags set
in the block descriptor. The transfer between individual sender and receiver hosts is
considered finished successfully after last data channel between them is closed with
EOD and the receiver host received at least one EOF block on at least one data
channel established between the two hosts. In general case of many-to-many
striping, EOF block must be sent on at least one data channel for every sender-
receiver pair. EOF communication is described in more details for each type of host.

Active Receiver
After receiving EOF block from a sender host, active data receiver host must not try
to open any new data channels to that sender host. It must continue receiving data
on all previously open data channels until it receives EOD block on the channel. The
receiver host may try to open new data channels to other sender hosts, those it has
not received EOF from. In case of striped transfer, the receiver must attempt to open
at least one data channel to each sender host. As long as at least one data channel
to at least one of sender hosts was open successfully, failure to initiate other
channels should not be considered an error by the receiver.

The transfer is considered finished successfully by active receiver after all data
channels are closed and at least one EOF block was received from each sender host.

Passive Receiver
Passive receiver host must be receiving data on all open channels until it receives
EOD on all channels with EOF on at least one of them. When EOF is received on one
of data channels, passive receiver is allowed to stop accepting new data channel
connections.

The transfer is considered finished successfully after all open data channels were
closed with EOD and at least one EOF block was received by each receiving host.

Passive Sender
Passive sender sends EOD on all open data channels with EOF bit set on at least one
data channel per receiver host. In case when it is impossible for the sender to
distinguish between connections coming from different receiving hosts, sender may
simply send EOF on all open data channels.

The transfer is considered successfully finished when all data was sent and all data
channels were closed and the receiver acknowledged all channel closures with “BYE”
messages.

Active Sender
Active sender sends EOD on all open data channels and EOF at least on one per
receiving host. Sender must not send EOF on any data channel until it receives
“READY” on all open channels.

In case of striped transfer, the sender must open at least one data channel to each
receiver host and send at least EOD and EOF block to each host even if there is no
data to be sent to the host.

The transfer is considered successfully finished when all data was sent and all data
channels were closed and the receiver acknowledged all channel closures with “BYE”
messages.

Dynamic Resource Allocation
For some applications, it is desired that such resources as network bandwidth, CPU
power and open I/O channels (file descriptors) can be dynamically allocated and
reallocated between concurrent transfers. Proposed protocol allows for new data
channels to be open and closed in the middle of transfer without data loss or
corruption. There are provisions for active or passive sender or receiver to open,
close or refuse to open new data channel at any time during transfer.

Active Sender
Active sender can control number of open data channels by opening and closing
them at any time. The receiver acknowledges new data channel with “READY”
message that allows the sender to start using the new channel. At any time active
sender can close any data channel after sending EOD block and optionally receiving
“BYE” as the acknowledgement.

Active Receiver
Active receiver can control number of open data channels by opening and closing
them at any time. The sender may or may not send any data on newly open channel.
Once the channel is open by the active receiver, it may close it at any time, but only
after sending “CLOSE” message and receiving EOD block. The receiver must keep the
channel open and continue receiving data until EOD block is received on the channel.

Passive Sender
Passive sender, naturally, cannot open new data channels, so it cannot increase
bandwidth utilization by adding new channels. It can only decrease bandwidth
utilization by:

• Closing data socket port thus refusing new data connections
• Closing newly opened data connection before sending any data on the

channel
• Sending EOD and closing the data channel
• Sending EOD, waiting for “BYE” and closing the data channel

Existing data channel can be closed at any time after sending EOD block and
optionally waiting for “BYE”.

Passive Receiver
Passive receiver can decrease bandwidth utilization by:

• Closing data socket port and refusing new data connections
• Closing newly opened data connection before sending “READY”
• Sending “CLOSE” as a request to close the data channel

Once “READY” message was sent to the sender, passive receiver must receive all
data sent on the channel until it receives EOD block or the sender closes the channel.

Data Channel Command Syntax
This section describes the format of commands sent by the data receiver on the data
channel socket. General format is text terminated with carriage return, linefeed
combination or just linefeed:

<DC command> = <keyword> [<parameters>] [<CR>] <LF>

Commands and their parameters are:

READY (no parameters)
The receiver sends READY command after the data channel is open to allow the
sender to start sending the data.

CLOSE (no parameters)
Data receiver sends this command when it needs to close the data channel. The
receiver must continue receiving data even after sending CLOSE command until it
receives EOD block.

BYE (no parameters)
This command is sent by the receiver to allow the sender to close the data channel.
It acknowledges that the receiver has successfully received all the data sent on this
data channel. The sender must not close the data channel until it receives “BYE”
command. The receiver closes the channel right after it sends “BYE”.

RESEND <offset> <length>
The receiver uses this command to request retransmission of a data block. Offset
and length are ASCII strings representing decimal numbers for block offset within
the file and its length. The sender does not necessarily have to resend requested
data in single block. It may split it into several blocks if necessary.

References
[gftp] Bill Allcock, et all, GridFTP v1.0 Draft

http://www-isd.fnal.gov/gridftp-wg/draft/GridFTPRev3.htm

[rfc959] IETF RFC959 http://www.ietf.org/rfc/rfc0959.txt?number=959

[crc] Timur Perelmutov, GridFTP Data Integrity Verification

Draft proposal
http://home.fnal.gov/~timur/gridftp/index.html

http://www-isd.fnal.gov/gridftp-wg/draft/GridFTPRev3.htm
http://www.ietf.org/rfc/rfc0959.txt?number=959
http://home.fnal.gov/~timur/gridftp/index.html

	Igor Mandrichenko, FNAL
	Abstract
	ContentsAbstract2Contents3Background4Proposed Solution4Data Block Format4Data Channel Protocol5Opening Data Channel6Closing Data Channel6Data Retransmission7Host Pairs8End of File Communication9Active Receiver9Passive Receiver10Passive Sender10Active Sen
	Background
	Proposed Solution
	Data Block Format
	Data Channel Protocol
	Opening Data Channel
	Closing Data Channel
	Data Channel Closed by the Sender
	Data Channel Closed by the Receiver

	Data Retransmission

	Host Pairs
	End of File Communication
	Active Receiver
	Passive Receiver
	Passive Sender
	Active Sender

	Dynamic Resource Allocation
	Active Sender
	Active Receiver
	Passive Sender
	Passive Receiver

	Data Channel Command Syntax

	References

